SINGULAR POTENTIAL BIHARMONIC PROBLEM

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular boundary conditions and regularity for the biharmonic problem in the half-space

In this paper, we are interested in some aspects of the biharmonic equation in the half-space R+ , with N ≥ 2. We study the regularity of generalized solutions in weighted Sobolev spaces, then we consider the question of singular boundary conditions. To finish, we envisage other sorts of boundary conditions.

متن کامل

Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation

We present new singular solutions of the biharmonic nonlinear Schrödinger equation (NLS) iψt(t,x)− ψ + |ψ |2σψ = 0, x ∈ R , 4/d σ 4. These solutions collapse with the quasi-self-similar ring profile ψQB , where |ψQB(t, r)| ∼ 1 L2/σ (t) QB ( r − rmax(t) L(t) ) , r = |x|, L(t) is the ring width that vanishes at singularity, rmax(t) ∼ r0L(t) is the ring radius, and α = (4 − σ)/(σ (d − 1)). The blo...

متن کامل

Singular Solutions of the Biharmonic Nonlinear Schrödinger Equation

We consider singular solutions of the L 2-critical biharmonic nonlinear Schrödinger equation. We prove that the blowup rate is bounded by a quartic-root, the solution approaches a quasi–self-similar profile, and a finite amount of L 2-norm, which is no less than the critical power, concentrates into the singularity. We also prove the existence of a ground-state solution. We use asymptotic analy...

متن کامل

The Gel’fand Problem for the Biharmonic Operator

We study stable solutions of the equation ∆u = e, both in entire space and in bounded domains.

متن کامل

Finite Element Methods for Biharmonic Problem

and Applied Analysis 3 Let EI and EB be the set of interior edges and boundary edges of Th, respectively. Let E EI ∪ EB. Denote by v the restriction of v to Ki. Let e eij ∈ EI with i > j. Then we denote the jump v and the average {v} of v on e by v |e v ∣ ∣ ∣ e −v ∣ ∣ ∣ e , {v}|e 1 2 ( v ∣ ∣ ∣ e v ∣ ∣ ∣ e ) . 2.4 If e ei ∈ EB, we denote v and {v} of v on e by v |e {v}|e v ∣ ∣ ∣ e . 2.5

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Korean Journal of Mathematics

سال: 2013

ISSN: 1976-8605

DOI: 10.11568/kjm.2013.21.4.483